Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667645

RESUMO

Gelatin nanofibers are known as wound-healing biomaterials due to their high biocompatible, biodegradable, and non-antigenic properties compared to synthetic-polymer-fabricated nanofibers. The influence of gamma radiation doses on the structure of gelatin nanofiber dressings compared to gelatin of their origin is little known, although it is very important for the production of stable bioactive products. Different-origin gelatins were extracted from bovine and donkey hides, rabbit skins, and fish scales and used for fabrication of nanofibers through electrospinning of gelatin solutions in acetic acid. Nanofibers with sizes ranging from 73.50 nm to 230.46 nm were successfully prepared, thus showing the potential of different-origin gelatin by-products valorization as a lower-cost alternative to native collagen. The gelatin nanofibers together with their origin gelatins were treated with 10, 20, and 25 kGy gamma radiation doses and investigated for their structural stability through chemiluminescence and FTIR spectroscopy. Chemiluminescence analysis showed a stable behavior of gelatin nanofibers and gelatins up to 200 °C and increased chemiluminescent emission intensities for nanofibers treated with gamma radiation, at temperatures above 200 °C, compared to irradiated gelatins and non-irradiated nanofibers and gelatins. The electron paramagnetic (EPR) signals of DMPO adduct allowed for the identification of long-life HO● radicals only for bovine and donkey gelatin nanofibers treated with a 20 kGy gamma radiation dose. Microbial contamination with aerobic microorganisms, yeasts, filamentous fungi, Staphylococcus aureus, Escherichia coli, and Candida albicans of gelatin nanofibers treated with 10 kGy gamma radiation was under the limits required for pharmaceutical and topic formulations. Minor shifts of FTIR bands were observed at irradiation, indicating the preservation of secondary structure and stable properties of different-origin gelatin nanofibers.

2.
Gels ; 10(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275848

RESUMO

This study aims to establish the effect of biostimulatory protein gels on the quality of tomato. One of the most consumed vegetables, tomato (Lycopersicon esculentum Mill.) is a rich source of healthy constituents. Two variants of protein gels based on bovine gelatin and keratin hydrolysates obtained from leather industry byproducts were used for periodical application on the tomato plant roots in the early stage of vegetation. The gels were characterized by classical physicochemical methods and protein secondary structure was obtained by FTIR band deconvolution. After ripening, tomato was analyzed regarding its content of quality indicators (sugars and organic acids) and antioxidants (lycopene, ß-carotene, vitamin C, polyphenols). The results emphasized the positive effects of the protein gels on the quality parameters of tomato fruit. An increase of 10% of dry matter and of 30% (in average) in the total soluble sugars was noted after biostimulant application. Also, lycopene and vitamin C recorded higher values (by 1.44 and 1.29 times, respectively), while ß-carotene showed no significant changes. The biostimulant activity of protein gels was correlated with their amino acid composition. Plant biostimulants are considered an ecological alternative to conventional treatments for improving plant growth, and also contributing to reduce the intake of chemical fertilizers.

3.
Polymers (Basel) ; 14(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335455

RESUMO

Keratin biomaterials with high molecular weights were intensively investigated but few are marketed due to complex methods of extraction and preparation and limited understanding of their influence on cells behavior. In this context the aim of this research was to elucidate decisive molecular factors for skin homeostasis restoration induced by two low molecular weight keratin hydrolysates extracted and conditioned through a simple and green method. Two keratin hydrolysates with molecular weights of 3758 and 12,400 Da were physico-chemically characterized and their structure was assessed by circular dichroism (CD) and FTIR spectroscopy in view of bioactive potential identification. Other investigations were focused on several molecular factors: α1, α2 and ß1 integrin mediated signals, cell cycle progression in pro-inflammatory conditions (TNFα/LPS stimulated keratinocytes and fibroblasts) and ICAM-1/VCAM-1 inhibition in human vascular endothelial cells. Flow cytometry techniques demonstrated a distinctive pattern of efficacy: keratin hydrolysates over-expressed α1 and α2 subunits, responsible for tight bounds between fibroblasts and collagen or laminin 1; both actives stimulated the epidermal turn-over and inhibited VCAM over-expression in pro-inflammatory conditions associated with bacterial infections. Our results offer mechanistic insights in wound healing signaling factors modulated by the two low molecular weight keratin hydrolysates which still preserve bioactive secondary structure.

4.
Materials (Basel) ; 14(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443218

RESUMO

The aim of this paper was to select keratin hydrolysate with bioactive properties by using the enzymatic hydrolysis of wool. Different proteolytic enzymes such as Protamex, Esperase, and Valkerase were used to break keratin molecules in light of bioactive additive preparation. The enzymatic keratin hydrolysates were assessed in terms of the physico-chemical characteristics related to the content of dry substance, total nitrogen, keratin, ash, cysteic sulphur, and cysteine. The influence of enzymatic hydrolysis on molecular weight and amino acid composition was determined by gel permeation chromatography (GPC) and gas chromatography-mass spectrometry (GC-MS) analyses. Antimicrobial activity of keratin hydrolysates was analysed against Fusarium spp., a pathogenic fungus that can decrease the quality of plants. The bioactivity of enzymatic hydrolysates was tested on maize plants and allowed us to select the keratin hydrolysates processed with the Esperase and Valkerase enzymes. The ratio of organised structures of hydrolysate peptides was analysed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) deconvolution of the amide I band and may explain the difference in their bioactive behaviour. The most important modifications in the ATR spectra of maize leaves in correlation with the experimentally proven performance on maize development by plant length and chlorophyll index quantification were detailed. The potential of enzymatic hydrolysis to design additives with different bioactivity was shown in the case of plant growth stimulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...